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Abstract

Cardiovascular diseases (CVDs) are the world’s largest
cause of mortality. There is consequently a great need
for early and accurate detection of CVDs. To enhance
the accuracy of CVD detection from 12-lead electrocar-
diograms (ECGs), we propose a novel Hand-Crafted Con-
volution Neural Network-Transformer Network (HC-CNN-
TN) model. We used the PTB-XL, which is a large pub-
lic dataset consisting of ECG data in 5 superclasses and
23 subclasses. The data consists of thousands of 10-
second 12-lead ECGs uniformly sampled at 100 Hz. Solv-
ing the problem of detecting the category of an ECG from
this dataset is a multi-label classification task with imbal-
anced data. We used a CNN-Transformer to extract high-
dimensional features and time-dependent patterns. To en-
hance model performance, the hand-crafted features we
extracted from the 12-lead ECGs are the QRS-complex,
RR interval, heart rate, T wave and P wave. The weighted
loss function is used to handle the imbalance. We achieved
a precision of 0.75, recall of 0.76, F1-score of 0.76, and
macro Area Under Curve (AUC) of 0.933. The same eval-
uation matrix is adopted for subclass classification, which
produced similar results. Thus, the proposed model, which
integrates hand-crafted and deep learning features, pro-
vides a promising way to classify multiple CVD categories
with unbalanced samples.

1. Introduction

Cardiovascular diseases (CVDs) are some of the deadliest
in the world, leading to approximately 17.9 million deaths,
which represents 32% of all global deaths, in 2019 [1]. The
most important non-invasive physiological signal used to
diagnose CVDs at an earlier stage is the electrocardiogram
(ECG). It is the electrical impulse of the atria and ventri-
cles propagated to the skin and captured by machines when

the heart alternates between contracting and relaxing [2].
The standard 12-lead ECG acquisition system uses 10 skin
surface electrodes, namely six limb leads I, II, III, aVR,
aVL, aVF, and six precordial (chest) leads V1-V6 [3]. Due
to this comprehensive spatial coverage of cardiac electrical
activity, the 12-lead ECG signal is considered very accu-
rate in clinical diagnosis. After acquisition of the ECG
signal, processing techniques are applied. Final results are
derived via either statistical or artificial intelligence (AI)
techniques. Presently, deep learning (DL) has become a
powerful approach for automated ECG classification, such
as Convolutional Neural Network (CNN) with BiLSTM,
1D ResNet34, and multi-branch CNN models [4–6]. How-
ever, existing DL models still face accuracy challenges, es-
pecially when dealing with complex or imbalanced ECG
datasets.

To overcome this shortcoming, we develop a DL frame-
work for multi-label classification of 12-lead ECG signals
to increase classification accuracy. Here, we propose a
hybrid model, a Hand-Crafted Convolutional Neural Net-
works–Transformer Networks (HC-CNN-TN), which in-
tegrates clinically meaningful hand-crafted features with
CNN-Transformer features extracted from the 12-lead
ECG signals. The PTB-XL database [7] from whence
the ECG signals are obtained as input for evaluation, with
model performance assessed on both superclass and sub-
class levels. By leveraging both domain knowledge and
deep feature extraction, the proposed model aims to im-
prove classification performance on complex and imbal-
anced ECG datasets.

2. Method

2.1. Dataset and Pre-Processing

The PTB-XL dataset [7] used in this paper is a large public
dataset of 21799 clinical 12-lead ECGs each 10-seconds
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Figure 1: The distribution of PTB-XL: 5 superclasses in
the inner circle and 23 Subclasses in the outer circle [7]

long obtained from 18869 patients. It has two sampling
frequency versions: 100 Hz and 500 Hz. Since [8, 9] has
shown that the two sampling frequencies do not lead to dif-
ferent results, 100 Hz is chosen. Moreover, 100 Hz data
can significantly decrease the complexity of the model,
speeding up the processing and training. As shown in Fig-
ure 1, five superclasses: Normal (NORM), Myocardial In-
farction (MI), ST/T Change (STTC), Conduction Distur-
bance (CD), and Hypertrophy (HYP) are represented in
the inner circle, each encompassing several of the 23 sub-
classes displayed in the outer circle.

In the pre-processing stage, we applied a fourth-order
Butterworth bandpass filter to eliminate the baseline drift
and artifacts of 12-lead ECG. The frequency response of
the filter is in the range 0.5 Hz to 45 Hz. The publisher of
the dataset divided the data into ten folds [7]. In this study,
the training, validation and test sets are partitioned accord-
ing to the ratios 8:1:1 for classification by the proposed
DL. This project followed the recommended proportion,
with the first eight folds serving as the training set, and
the remaining parts being the test set and validation set,
respectively.

2.2. Classification
This paper proposes a novel model named HC-CNN-TN,
as illustrated in Figure 2. The model combines both hand-
crafted feature extraction and DNN-based feature learn-
ing to leverage the complementary strengths of clinical
knowledge and data representation. In the left branch
of Figure 2, the hand-crafted features extracted from 12-
lead ECG signals are passed through a feedforward mod-
ule, which consists of a sequence of Linear, Batch Nor-
malization, and ReLU layers. This structure enables the
model to integrate features with different dimensions and
physical units, and to automatically learn the complex

Figure 2: Model architecture of the HC-CNN-TN, the left
branch shows the hand-crafted feature processing; and, the
right branch is the CNN layers with positional encoding
and Transformer encoder

inter-dependencies among them. The ReLU activation
introduces non-linearity, enhancing the model’s capacity
to capture intricate decision boundaries from the hand-
crafted inputs. In the DNN branch, shown on the right
side of Figure 2, the 12-lead ECG signals are first reshaped
into the format [Batch, 12, Time] and then passed through
a series of 1D convolutional blocks. Each block consists
of Conv1d, BatchNorm1d, ReLU, and MaxPool1d layers,
which progressively extract local temporal and spatial fea-

Table 1: Hand-Crafted Features

ECG
characteristic

Features

RR interval mean, median, min RR differ-
ence, pNN60, Root Mean Square
of Successive N-to-N Differences
(RMSSD)

QRS complex duration mean, duration standard
deviation (SD), amplitude mean,
amplitude SD, area mean, area
SD, slope mean, slope SD

T wave mean, T-wave alternans (TWA),
Multi-scale permutation entropy
(MPE)

QT interval mean
Frequency mean
Wavelet
transform

level 4 entropy, level 3 entropy

Heart rate min, max, mean, SD
P-wave correlation coefficient, sample en-

tropy, approximate entropy
Demographic
information

age, gender
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tures. The output of the convolutional layers is then fed
into a Transformer Encoder equipped with positional en-
coding, enabling the model to capture long-range temporal
dependencies across the ECG leads. Finally, the outputs
from the Transformer Encoder and the hand-crafted feature
feedforward module are concatenated, forming a unified
feature representation. This concatenated tensor is then
passed through a final feedforward layer with a dropout
rate of 0.1 to obtain the output.

Table 1 shows the set of clinically significant hand-
crafted features that capture key characteristics of the ECG
signal to enhance model performance in multiclass car-
diac classification tasks. Furthermore, to address the class
imbalance in our multi-label ECG classification task, we
employed the BCEWithLogitsLoss function with class-
specific positive weights. The positive weight for each
class i was computed based on the inverse square root of
the class frequency ratio:

pos weighti =

(
N − Pi

Pi + ε

)0.4

, (1)

where N is the total number of samples, Pi is the number
of positive samples for class i, and ε = 10−8 is a small
constant to prevent division by zero. To avoid excessively
large weights for rare classes, we applied clipping to the
computed weights:

pos weighti = min (max(pos weighti, 0.8), 3.0) . (2)

This weighting scheme moderately emphasizes underrep-
resented classes while avoiding training instability caused
by large weight values. The final class-wise weight vector
was passed to the BCEWithLogitsLoss function through
its pos weight parameter.

3. Results

3.1. Experiment Setup
All experiments were conducted on an NVIDIA GeForce
RTX 3050 GPU. The hyperparameters used for training are
batch size 64, learning rate 3e-4 and 15 epochs. Binary
Cross-Entropy loss function and Adam optimizer were
chosen, and CosineAnnealingLR was applied as the learn-
ing rate scheduler to avoid premature convergence.

3.2. Evaluation and Benchmarks
The results in Table 2 demonstrate strong and balanced
performance across NORM, CD, MI, STTC. The HYP
classification result also suggests that weighted loss is ef-
fective in addressing the challenge of underrepresented
classes. In Figure 3, based on the five confusion matri-
ces for the 5 superclasses categories, the model shows a
generally stable classification performance, with notable

Table 2: Results for Superclasses

class precision recall F1-
score

CD 0.80 0.74 0.77
HYP 0.62 0.62 0.62
MI 0.74 0.77 0.75
NORM 0.83 0.91 0.87
STTC 0.75 0.78 0.76

Figure 3: Confusion matrix for superclasses

strengths and some weaknesses. In the confusion matrix,
the positive label and negative label are imbalanced: the
number of positive labels is significantly less than negative
labels. After assigning the weighted loss, the model makes
more positive decisions.

In order to test this model on a more difficult task, this
project experiments with 23 categories classification in the
same dataset. The results include macro precision of 0.74,
recall of 0.73, F1-score of 0.73 and AUC of 0.928. The
performance is similar to the 5 superclass classification.
This indicates that the HC-CNN-TN is also effective in
classifying the subtypes of CVDs, and the performance can
help guide diagnostic triage. In Table 3, the HC-CNN-TN
results have macro precision of 0.75, recall 0.76, F1-score
0.76, and AUC 0.933. Compared to others, HC-CNN-TN
has the best precision, recall and F1-score, and relatively
high AUC.

4. Discussion

The present work achieves state-of-the-art performance on
both the five diagnostic superclasses and the 23 diagnostic
subclasses in the PTB-XL dataset, showing its effective-
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Table 3: Benchmarks

Model precision recall F1-
score

AUC

X-ECGNet [9] 0.74 0.76 0.75 0.93
Lightweight
Multi-receptive
Field CNN [10]

0.73 0.71 0.72 0.93

CNN with Entropy
Features [11]

0.71 0.66 0.68 0.91

HC-CNN-TN 0.75 0.76 0.76 0.93

ness in capturing diverse and clinically relevant patterns.
To address the label imbalance problem in the dataset,
where negative samples are significantly outnumbered by
positive ones, a weighted loss strategy was employed dur-
ing training. Compared with previous studies that mainly
relied on CNNs, ResNet-based models, or recurrent net-
works, our approach consistently achieved high precision,
recall, and F1-score in handling the imbalanced nature of
the PTB-XL dataset. However, several challenges remain.
The proposed model lacks interpretability, and the results
are limited to the PTB-XL dataset.

5. Conclusion

To conclude, the proposed HC-CNN-TN model demon-
strates strong capability in performing multi-label classi-
fication of 12-lead ECG signals. This approach assigns
higher importance to underrepresented classes, effectively
mitigating bias toward dominant categories and improving
the recall and F1-score of minority diagnoses such as HYP.
Overall, the results indicate that the HC-CNN-TN frame-
work has state-of-the-art performance for the 12-lead ECG
classification task. In future work, we plan to enhance the
interpretability of the HC-CNN-TN model and release the
attribution results. The attribution will show visually the
parts of the ECG that contribute more to the results, thus
enhancing confidence in the model’s predictions. More-
over, transfer learning will be adopted to adapt the model
to specific diagnostic tasks and external datasets. These
improvements will broaden the scope of the application,
making the model suitable for more specific scenarios.
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